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1.0 Background 

 A primary advantage to using modeling and simulation (M&S) in a test program is it can often 
answer test measures that, if answered using real-world data, would require unrealistically expensive, 
time-consuming, or complex test events. Simulation outputs, though, are only as good as the underlying 
assumptions and models built into the simulation. For even moderately complex simulations, it is not 
easy to predict the quality of simulation results based purely on the logic that if component models1, 
theoretical component interactions, and simulation inputs are valid, then the simulation results will be as 
valid as the results of a real-world test event under the same conditions. 

1.1. The Problem of Validating Simulation Outputs 

 Direct comparison of simulation results to real-world test data is often conducted as part of a 
simulation validation effort. Assuming simulation input parameters are adequately matched to known 
real-world parameters, differences between simulation outputs and real-world test data could imply: 1) 
the test data is not statistically representative (contains multiple outliers), or 2) the simulation is not an 
adequate representation of the real process or system given the chosen input parameters. The analyst 
charged with simulation validation needs to eliminate the first possibility before focusing on the second 
possibility. 

 The analyst is faced with a difficult question: has enough data been collected under these 
conditions to be considered a statistically significant sample for comparison with the simulation? 
Consider a validation effort for a Monte Carlo simulation that produces one or more static parameters of 
interest to a test program. Such static parameters might include target miss distance in a weapon system 
simulation, breakage rate of a physical component in a reliability simulation, or supply depletion in a 
campaign simulation. Proponents of M&S in testing sometimes argue that a simulation will predict these 
static parameters in operating regimes that were never exercised in the real-world. For example, the 
simulation will predict weapon probability-of-kill at a launch altitude of 200 ft when, due to safety 
restrictions, the real-world launch tests never took place below 1000 ft. This is a paradox of sorts: the 
simulation is supposed to alleviate the need to conduct costly live tests, but the live tests are the best 
indication that the simulation is producing realistic results. 

1.2. Population Characterization of the Simulation Outputs 

A Monte Carlo simulation induces random noise at various points in the simulation process to 
replicate random variation that will occur in the real-world process or system. These random inputs 
undergo linear and/or non-linear operations in the simulation process, and the outputs of these processes 
will form statistical distributions that may be difficult to characterize analytically. For example, in a 
complex, mixed linear/non-linear simulation, Gaussian (normal)-distributed random inputs do not 
guarantee Gaussian-distributed outputs. But, because simulations can be run many times over 

                                                 
1 “Component model” is used in the broad sense to describe individual pieces within an overarching simulation rather than 
the more narrow sense to describe physical “components” being modeled in the simulation. 
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(producing thousands of data points), it is fairly easy to numerically approximate the population 
parameters2. 

 One might consider a real-world test event to be a “simulation” in which each event outcome is 
essentially a random sample from some hypothetical statistical population. In general, what the 
simulation validation analyst would like to show is the hypothetical test event population is statistically 
similar to the hypothetical (or computed) simulation population. Like the simulation output populations, 
the live event data populations may be difficult or impossible to predict analytically. Since test events 
may be duplicated only a few times (or not at all), few data points are generated, and sample statistics 
may produce very skewed estimates of the population statistics. Furthermore, it is likely that the 
populations for unique experiments are statistically different, because the system performance may 
differ for each set of test parameters3. 

 If the analyst could rely on data across experiments, the sample size is effectively increased, and 
the validation data becomes more statistically significant. Also, if the technique used to aggregate the 
test data from different experiments could account for the expected performance differences between 
experiments, the analysis of aggregate results might be more justifiable. The technique described below 
will attempt to combine data across experiments so the aggregate result is useful in determining how 
faithful a simulation models real system performance. 

2.0 Technique 

In section 2.1, the mathematical foundations of the technique will be presented. In section 2.2, 
previous work using related techniques will be acknowledged.  

2.1. Mathematical Foundations 

Consider Equation 1 relating the cumulative probability distribution function (cdf) with its 
corresponding probability density function (pdf). The random variable X is continuous over the interval 
[–∞, +∞]. The upper limit of integration, x, is a constant. 

 
∫
∞−

=
x

XX dttfxF )()(  (1)

By definition, FX(x) is always a non-decreasing function. 

 Consider a derivation shown in Leon-Garcia [3] that assumes a random variable, Z, such that 

 )(1 UFZ X
−=  (2)

where U is a uniformly distributed set of values between 0.0 and 1.0. The random variable Z is the 
inverse cdf for the random variable X with cumulative probabilities expressed as 

                                                 
2 Population parameters refer to all parameters needed to describe a particular population of interest. For example, a Gaussian 
population’s sufficient parameters (statistics) would be mean and standard deviation. Throughout this paper, the term 
“population” will be used interchangeably with “population parameters” since the sufficient parameters uniquely define their 
associated population. 
3 In fact, if performance was not expected to differ across dissimilar experiments, one might question entirely the need for 
conducting multiple experiments. 
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 [ ] [ ]xUFPxZP X ≤=≤ − )(1  (3)

By applying the cdf, FX(•), to both sides of the rightmost bracketed inequality in (3), the result becomes 

 [ ] ( )[ ] [ ])()()(1 xFUPxFUFFPxZP XXXX ≤=≤=≤ − (4)

Because U is uniformly distributed in the range [0,1], for a constant h, P[U ≤ Fx(x) = h] = h, and 

 [ ] )(xFhxZP X==≤ . (5)

 Equation 2 implies that a uniformly distributed set of numbers between 0 and 1 can produce 
samples in x that obey an arbitrary probability distribution (see Figure 1). This inverse cdf theorem is 
often used in computer algorithms to produce random numbers obeying a desired distribution using a 
simple uniform random number generator. Note that this theorem is completely general. The principle 
applies to any and all probability distributions (although not all continuous distributions have a closed-
form inverse cdf). 

  

Figure 1: Inverse cdf example. Using a normal cdf as an example, one can see how uniformly spaced cumulative 
probabilities, when mapped through the cdf, produce normally distributed data in x. 

Now consider a sample of values, Sx, composed of individual data elements sx. Assume some 
unspecified continuous cdf, FX(x), exists, and one wishes to determine whether or not the sample SX is 
distributed according to X. Equation 2 states that, when the inverse cdf FX

-1(U) operates on the 
uniformly distributed set U, the result is the random variable Z. Conversely, if the data in sample SX is 
truly distributed as X, then, for large sample sizes, the cumulative probabilities that result from FX(Sx) 
will be distributed uniformly. 

 This can be restated in terms of test events and populations. Consider the sample SX to be 
composed of individual data elements, sx, that represent any measure of interest acquired from real-
world experiments. Each data element is, in effect, a random sample from a hypothetical (and perhaps 
uncharacterized) statistical population. Assume that a simulation predicts a particular statistical 
population4, Xsim, and the analyst wishes to decide if the sample SX is distributed according to Xsim. If SX 
is sufficiently large, then FX(SX) should result in a uniformly distributed set of cumulative probabilities. 

                                                 
4 “Predicts” merely implies the population characteristics could be computed numerically from multiple simulation trials. 
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If SX is not distributed according to X, then uniformity should not be expected for large samples. One 
might call a simulation “ideal” when its output statistical populations precisely match those of the real-
world process or system. 

Note this development makes no assumptions about underlying population distributions. A 
conventional “goodness-of-fit” test applied directly to the sampled data requires assumptions about 
statistical populations and requires multiple data points from each hypothesized population. By testing 
for cumulative probability uniformity, even if each experiment represents a different population pair 
(simulation and test), the cumulative probabilities can be analyzed in aggregate5. In essence, the analyst 
can examine a wider set of test factors (valuable for demonstrating overall system performance across 
many regimes) while producing a statistically significant data set used to validate a simulation prediction 
of a specific parameter of interest. This technique trades statistical significance at the individual 
experiment level for statistical significance in the aggregate. Fewer repetitions are conducted for each 
experiment, but one can exercise a broader sampling of the parameter space (i.e., larger number of 
unique experiments) and still keep the total number of trials fixed. 

2.2. Previous Work 

 The technique described herein benefits greatly from an assortment of internal government 
working papers and correspondence produced in support of the AIM-9X missile program. That 
simulation validation effort applied R.A. Fisher’s combined probability test (an already well established 
technique in biological research) to the unique problems of operational testing. As part of a related 
effort, Arthur Fries of the Institute for Defense Analyses (IDA) published a paper [2] for the 6th Annual 
U.S. Army Conference on Applied Statistics. Relying on some discussions with A. Rex Rivolo (also of 
IDA), Fries’ paper investigated the theoretical underpinnings for a Fisher combined probability test 
applied to simulation validation. This paper is intended to demonstrate the utility of Fries’ techniques 
through “simulated” validation problems involving artificial data. The intent is to move beyond the 
theoretical statistics and into the realm of widespread application. Also, unlike previous works, this 
paper does not rely on Fisher’s logarithmic transformation of tail probabilities, but instead uses the raw 
cumulative probabilities in a Kolmogorov-Smirnov goodness-of-fit test. Nonetheless, the contributions 
of Fries, Rivolo, and many “behind the scenes” analysts cannot be overemphasized.  

3.0 Demonstration of Theory 

 The techniques in Section 2.1 are entirely general in the sense that the only assumption is 
simulation and test results can be represented as ratio data6. To demonstrate an application of the 
described technique, a set of software tools was developed to produce “simulation data” and “test data”. 
In an actual simulation validation problem, simulation data would be produced by software that 
simulates a process or system, and test data would be produced in a real-world experiment involving the 
real process or system. By creating simulation and test data from a set of software tools (as is done 
here), it is possible to verify the statistical theory described in Section 2.1. Theory verification would not 

                                                 
5 The basis for this fortunate fact is cumulative probabilities (regardless of which experiment produced them) are 
hypothesized to belong to a uniform distribution over the range 0.0 to 1.0 (regardless of the underlying population 
distributions). Uniform distributions are completely described by their bounds, so all cumulative probabilities from all 
experiments are hypothesized to be random draws from a uniform distribution between 0.0 and 1.0.  
6 Ratio data, in statistical parlance, must have a natural zero starting point. Also, ratios of the data, as well as differences, are 
meaningful comparisons. A large majority of real-world test data is ratio data. 
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be possible using an actual validation problem with real data, but simulation validation is the intended 
application for this technique. 

 The software tools used here also perform the uniformity tests on the cumulative probabilities. 
This function is identical to what would be done in an actual validation problem, so these tools have 
applicability beyond verification of the statistical theory. A brief discussion of the methodology in the 
tools follows. 

3.1. Creating Simulation and Test Cases 

 In this analysis, a simulation/test pair will involve random variables Xsim and Xtest. Each pair will 
produce a single realization (random draw), xtest, from Xtest, and this should be interpreted as the measure 
or statistic computed from a real-world experiment. Each pair will also produce a vector of realizations, 
xsim, from Xsim, and this should be interpreted as the set of predicted values of the measure or statistic 
produced from a Monte Carlo simulation. Each set xsim will contain results from 100 Monte Carlo trials. 
The mean and standard deviation of the vector xsim could function as an estimator of xtest. Note that an 
individual pair represents the results of a real-world test conditioned upon a given set of test conditions 
and a given system configuration. This test would be subsequently reproduced in a simulation exercise. 

 Multiple pairs will comprise a set of cumulative probabilities for uniformity testing. This is 
analogous to completing several test events (or experiments), each with a different set of test factors. 
Notationally, the i-th individual case, and the realizations for that case, would be denoted as 
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sim
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i
sim
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,,1for  
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KKK

=→

===→ x
 (6) 

where I is the number of pairs in the series of experiments and N is the number of Monte Carlo trials in 
each case. The i-th pair produces a single cumulative probability pi. For this analysis, I = 10. 

 The techniques here can be extended to multi-dimensional data, but this paper will focus on one-
dimensional data for simplicity of discussion. For thoroughness of analysis, multiple sets of 
experiments, or batches, will be run. Each batch will contain a different set of simulation/test pairs, so 
the results produced by the theory in Section 2.1 can be viewed in an aggregate sense7. Batch analysis 
will involve 100 sets of I cases. 

3.2. Replicating Simulation and Test Data 

 The simulation data and test data will be formed as sets of random draws from the random 
variables Xsim and Xtest and implemented in the software tools. To demonstrate that the technique does 
not rely on assumptions about underlying probability distributions, the analysis will include data derived 
from both Gaussian and Rayleigh random variables8. Remember from Section 2.1 that an “ideal” 
simulation would produce data from the identical statistical population that produces test data. In these 
tools, an “ideal” simulation would use i

simX  having identical means and covariances as the test variables 

                                                 
7I cases produce i

testx  and pi for i=1,…,I. A single uniformity test requires all I cases in the set, so a batch process allows 
analysis of many uniformity tests on widely varied data. 
8 It can be shown that W, the root sum square ( 22 YXW += ) of two jointly Gaussian random variables, X and Y, is Rayleigh 
distributed [3]. Since Gaussian random number generators are readily available in many software packages, Rayleigh data 
provides an easily implemented alternative probability distribution. 
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i
testX . Conversely, non-ideal simulations imply i

simX  has different statistics than i
testX . Note that test data 

and simulation data will always be the result of independent random draws from the corresponding 
random variables. 

3.3. Cumulative probabilities for each test 

 Per the development of Section 2.1, a cumulative probability, pi, is computed for each test 
realization i

testx  based on the approximated cumulative distribution function belonging to i
simX . For this 

analysis, the simulation data will be used as a discrete approximation to the cdf of Xsim, and interpolation 
between points xsim,n and xsim,n+1 will be performed to smooth the approximation. Remember that in real-
world validation problems, i

testX  is totally unknown, so the theory in Section 2.1 only exploits 
knowledge of i

simX  (which is always known). In theory, one could compute cumulative probabilities 
based on some a priori knowledge of the statistical distributions for Xsim. Numerical approximation has 
the added benefit of showing that the theory requires no assumptions about distributions of data. 
Cumulative probabilities will be tested for uniformity using a Kolmogorov-Smirnov test, but other 
“goodness-of-fit” tests could be equally valid. 

4.0 Results 

 Six cases were run using the previously described software tools, where each case contains 100 
sample sets (or batches) of cumulative probabilities. Each batch includes I = 10 simulation/test event 
pairs (yielding ten cumulative probabilities). The i-th pair represents 100 random draws from the 
simulation random variable i

simX  and a single “test event” draw from the random variable i
testX . 

 A K-S test for uniformity is performed on every batch of I cumulative probabilities, producing 
100 K-S test statistics. Other goodness-of-fit tests could be applied here, but the K-S test is 
mathematically straightforward and lends itself to visualization. A Kolmogorov-Smirnov test, as applied 
to a single batch of I probabilities hypothesized to be uniform, compares the maximum y-axis deviation 
of the expected cumulative frequencies from the ideal uniform cdf (denoted in Figure 2 by the black line 
of slope 1.0). Expected cumulative probability (equivalent to frequency) of the i-th empirical cumulative 
probability is computed as pexp,i = i / I for i=1,…,I, where I represents the total number of cumulative 
probabilities in the set. The gray-shaded region represents the region of acceptance for the K-S test as 
determined by the K-S test critical value9. Any single probability falling outside this region will cause its 
batch to fail the K-S test for uniformity, and some batches may have more than one probability outside 
the shaded region [1]. 

 In the first three cases, the I Gaussian or Rayleigh random variables have independently and 
randomly chosen means and standard deviations (within predefined bounds)10, and all 100 I pairs are 
distinct (i.e., there is no repetition of random variable parameters within any sample set or across sample 
sets). The randomly chosen random variable parameters are intended to reduce the possibility that a 
chance combination of parameters makes the theory appear valid when it might be generally invalid. 

                                                 
9 The K-S test critical value is a function of the chosen α (0.1 in these examples) and the sample size (N = 10). 
10 The Rayleigh data is created from two, independent Gaussian random variables with randomly chosen means and standard 
deviations. 
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However, this technique confounds two sources of uncertainty: 1) the randomly chosen population 
parameters, and 2) the randomly drawn test event and its associated cumulative probability. 

 Cases 3 through 6 eliminate the first source of uncertainty inherent to Cases 1 through 3 by 
fixing population parameters for all batches. In other words, the parameters for the i-th simulation 
population are identical for all 100 batches, and the parameters for the i-th test event population are 
identical for all 100 batches. Within a batch, however, the parameters for the I=10 populations (both 
simulation and test event) will differ. The remaining uncertainty factor is the test event random draw 
that occurs for each pair in a batch, but this uncertainty will always exist in a real-world validation 
problem. The i-th test event random draw is independent for each of the 100 batches. 

4.1. A Visual Inspection 

 Before analyzing the K-S test results, it is worth looking at the raw cumulative probabilities. 
Figure 2 shows expected cumulative frequencies (reduced to probabilities) versus the empirical 
cumulative probabilities computed from the approximated cdfs for all 100 runs in a case. Probabilities 
shown in Figure 2 were derived from the Gaussian-distributed data, and the Rayleigh data (not shown) 
was virtually identical in appearance. 

  Note that the probabilities in Figure 2(a) have a structure that mimics that of the shaded region. 
These probabilities were produced using an “ideal” case in which the simulation random variables were 
statistically identical to the test random variables. Incidentally, as the alpha value on the K-S test 
changes, the shaded region would widen (for smaller alpha) or narrow (for larger alpha), thereby 
changing the number of points falling inside the region of acceptance. The probabilities in Figure 2(b) 
came from the significantly skewed Case 3 (to be described in more detail below), and the structure here 
is noticeably different than in 2(a). Case 2 (not shown) yields probabilities with a structure somewhat 
between Figures 2(a) and (b). Most importantly, because visual analysis of probability data is rather 
subjective, a goodness-of-fit test, like K-S, generally makes a more powerful statement about 
uniformity. 

 
(a) 

 
(b) 

Figure 2. Expected cumulative frequencies (probabilities) are plotted versus the cumulative probabilities computed 
from the approximated pdfs of Gaussian distributed data: (a) the “ideal” simulation of Case 1, (b) the significantly 
skewed sim of Case 3. Each figure contains 1000 cumulative probabilities (100 batches of 10 probabilities). 
 

 The first case assumed an ideal simulation in which i
simX  is statistically identical to i

testX  for all I 
pairs and all sample sets. Section 2.0 theory would predict that cumulative probabilities within each 
batch of size I=10 should appear uniformly distributed. 
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4.2. Testing for Uniformity 

Case 1 
 Histograms for the K-S test results were created for each case, and the resulting cumulative 
distributions are presented below11. The two-sided K-S test critical value for α=0.1, I=10 is 0.368 and is 
denoted by a red vertical line in the cdf plots. Figure 3 shows the critical value mapping near the 95-th 
percentile for both the Gaussian and Rayleigh data, implying about 95% of all sample sets passed the K-
S test for uniformity. Passing the K-S test implies that the simulation is faithfully predicting the test 
distribution, and the simulation can be considered a good predictor of system/process outcome. 

 The 5% of batches that failed the K-S test represent a Type I error region. Type I error, in this 
context, is committed by declaring a simulation to be a poor predictor of the real-world process when it 
is, in fact, a faithful predictor. Figure 3 demonstrates that, about 5% of the time, a single sample set of 
size I=10 would fail a K-S test even though the simulation and test populations are statistically identical. 
As with all statistical tests, the random variation in the sample leads to this Type I error. 

 
(a) 

 
(b) 

Figure 3: Distribution of K-S test results for Case 1, the “ideal” simulation: 
a) the cdfs for the Gaussian data results (dashed line) and the Rayleigh data results (solid line). The K-S test critical 
value (0.368) is denoted by the red vertical line. The intersection of the cdf and critical value indicates the 
percentage of batches that passed the K-S test for uniformity. 
b) the histogram of the Gaussian data results, with red vertical line showing the K-S critical value and green vertical 
line denoting the mean of the histogram. 

Case 2 

 The second case assumed the simulation does not faithfully reproduce the test populations. 
Results appear in Figure 4. The test distributions for this batch were randomly chosen such that their 
means are between 50% and 150% of the corresponding simulation means (i.e., skewed 50% in both 
directions) and their standard deviations are between 100% and 110% of the corresponding simulation 
standard deviations (i.e., as much as 10% greater variation about the mean)12. The K-S cumulative 

                                                 
11 The K-S test histograms presented here are used only for visualization of the batch results, and they are not related to the 
pdf/cdf of the underlying data. In a real validation problem, only one K-S test is performed, so K-S histograms and K-S 
cumulative distributions would be unnecessary. 
12 When producing skewed Rayleigh data, the means and standard deviations of the component Gaussian random variables 
are adjusted prior to construction of the Rayleigh data. 
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distributions show the critical value maps near the 65-th percentile for both Gaussian and Rayleigh data. 
This implies 35% of all sample sets failed the K-S test for uniformity. 

 Depending on the specific combinations of simulation/test event population pairs in Case 2, 
some batches might represent fairly “good” simulations while other batches might represent fairly “bad” 
simulations. Therefore, Case 2 should be viewed as a plausible real-world validation scenario in which 
simulation predictions are presumed to be fairly close to real-world results, but the analyst cannot easily 
determine how close they truly are. Lastly, in Case 2 batches, a few population pairs might be 
statistically similar while other pairs in the same batch might be statistically dissimilar13. Cases 5 and 6 
will address this problem more thoroughly. For the variations in simulation/test populations chosen in 
Case 2, it is likely the analyst would decide the simulation is “not a bad representation” of reality. The 
null hypothesis is, therefore, not rejected. 

 
(a) 

 
(b) 

Figure 4: Distribution of K-S test results for batch set two, the moderately skewed simulation: 
a) cumulative distributions for the Gaussian and Rayleigh data results 
b) histogram of the Rayleigh data results 

Case 3 

 Case 3 (see Figure 5) shows the effect of having significant differences between simulation 
outputs and real-world performance. Case 3 has a larger window of population pair variability than did 
Case 2, and it is very unlikely that any simulation/test population pairs will be statistically similar. The 
test distributions for this batch were randomly chosen such that their means are between -100% and 
300% of the corresponding simulation means14 (i.e., skewed 200% in both directions) and their standard 
deviations are between 50% and 200% of the corresponding simulation standard deviations (i.e., as 
much as 100% greater or 50% less variation about the mean). The K-S cumulative distributions show 
the critical value maps near the 20-th percentile for the Gaussian data and the 10-th percentile for the 
Rayleigh data. This implies 80% (Gaussian) and 90% (Rayleigh) of all sample sets failed the K-S test 
for uniformity. 

                                                 
13 Because of the way population parameters were randomly assigned, it is extremely unlikely that any simulation/test 
population pairs are statistically identical in Cases 2 or 3. 
14 Using the developed tools, the mean of i

testX  can be on either side of the simulation mean and take on values of opposite 
sign. In the context of Case 3, -100% and 300% imply μX varies between -1.0 and +3.0 times the simulation mean. 
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 Figure 5 also illustrates the likelihood of a hypothesis test Type II error. Type II error, in this 
application, is committed by declaring a poor simulation to be a faithful predictor of the real-world 
process population. Keep in mind that “good” (or faithful) and “poor” are subjective labels applied to 
the differences in statistical populations (a rather strict test for validation purposes). The likelihood of a 
Type II error is about 10-20% for this case, because 10-20% of the samples pass the K-S test for 
uniformity when theory would suggest the underlying populations should yield non-uniform cumulative 
probabilities. Also keep in mind that, in a real validation problem, only the Type I error can be 
controlled in this technique (by changing α). Type II error probability (β) is essentially fixed once a 
sample size (I) and confidence level (α) have been chosen.  

 
(a) 

 
(b) 

Figure 5: Distribution of K-S test results for batch set three, the significantly skewed simulation: 
a) cumulative distributions for the Gaussian and Rayleigh data results 
b) histogram of the Gaussian data results 

 This third case demonstrates that a simulation with significant variation from real-world 
performance will generally fail the K-S test for uniformity. If α were increased, thereby lowering the K-
S critical value, even fewer samples would pass the uniformity test. This would lower the likelihood of 
declaring a bad simulation good, but it increases the likelihood of declaring a good simulation bad. The 
analyst much choose α based on these risks and based on knowledge that smaller α’s will make small 
discrepancies between simulation and real-world more difficult to detect. 

Case 4 

 This case is very similar to Case 1 in the sense that the simulation and test populations for all ten 
pairs are statistically identical. As previously stated, the pairs are dissimilar within the batch (i.e., each 
population pair is unique). As shown in Figure 6, removing the added source of uncertainty from Case 1 
does not change the outcome of the K-S test results. The K-S critical value maps into the 95-th 
percentile of the K-S cdf, implying 95% of all batches passed the test for uniformity at the chosen alpha. 
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Figure 6: Results for Case 4, an “ideal” simulation. This case is similar to Case 1, except the i-th population pair is 
statistically identical across all 100 batches (see text for further explanation). 

Cases 5 and 6 and “Meta-Analysis” 

 Cases 5 and 6 evaluate the effects of a mixed population set. A mixed set is, perhaps, a good way 
to describe a scenario in which the simulation is a good statistical predictor in certain regimes and a not-
so-good predictor in other regimes. In Case 5, three of the simulation/test population pairs include 
simulation populations that are not statistically identical to the corresponding test population. The 
remaining seven pairs are statistically ideal in the sense that simulation and test populations are 
identical. In Case 6, six pairs are statistically different sets and the remaining four pairs are statistically 
ideal. Only the Gaussian data is shown for these cases. The K-S cdfs appear in Figure 7, and the 
cumulative probabilities appear in Figure 8. 

 
(a) 

 
(b) 

Figure 7: K-S test statistic cdfs for Cases 5 and 6. Case 5 (a) included three pairs of statistically different sim/test populations 
and seven pairs of statistically identical sim/test populations. Case 6 (b) included six different pairs and four identical pairs 
(see text for further explanation). 

 Note in Figure 8(a) the K-S test statistic mapped to slightly above 90% for Case 5, so 90% of all 
batches passed the K-S test for uniformity even though three pairs included non-ideal simulation 
populations. Conversely, in Figure 8(b), only about 45% of the batches passed the K-S test. The 
implication here is that a test for uniformity is flexible enough for situations in which a simulation works 
well in some regimes and not as well in others. Cases 5 and 6 also illustrate the value of so-called “meta-
analysis”. Fries used this term to describe the multi-faceted process by which the analyst would decide 



 13

whether a simulation is good enough for its intended purpose based partially on the results of the 
uniformity test. 

 
(a) 

 
(b) 

Figure 8: Cumulative probabilities for Cases 5, shown in (a), and 6, shown in (b). As expected, Case 6 has more probabilities 
falling outside the K-S test region of acceptance than does Case 5. 

 Cases 5 and 6 are only snapshots of what can occur in a real-world validation problem, because 
these problems have many variables. For example, the cases in this paper have I=10 cumulative 
probabilities produced from 10 sim/test population pairs. Each pair of Gaussian populations would have 
two means (simulation and test) and two standard deviations, all of which are independent. Therefore 
each batch of 10 probabilities incurs 40)1022( =××  degrees-of-freedom, all of which have some 
impact on the nature of the K-S test results. These degrees-of-freedom are confounded further by the 
randomness of real-world sampled test data. For the Rayleigh data case, the degrees-of-freedom would 
grow to 402 since each Rayleigh random variable is created from two, independent Gaussian 
distributions. In this author’s opinion, the meta-analysis of cumulative probabilities is a daunting 
exercise; a valuable exercise so long as the analyst remains cognizant of the “big picture”. 

4.3. Single Batch Analysis Techniques 

 The preceding analysis was primarily designed to test the validity of using a non-parametric 
goodness-of-fit test to determine cumulative probability uniformity. Ultimately though, the analyst 
would like to apply this technique as a simulation validation tool. The obvious difference between the 
analysis of section 4.2 and a real-world validation problem is the real-world problem results in a single 
batch of cumulative probabilities (vice multiple batches in 4.2). As is true with any sample-based 
statistical technique, type I and II errors will go unrecognized in the single batch case. The probability of 
these errors is controllable to some extent by understanding the effects of sample size (the number of 
cumulative probabilities in the batch), the statistical power of the test, and the chosen alpha value. 

 Fortunately, the single-batch case provides more than just a test statistic on which to base a 
decision. Recall that a simulation which faithfully predicts the real-world process or system will produce 
uniformly distributed cumulative probabilities according to the technique described in section 3.0. The 
simplicity of a uniform distribution makes for straightforward “what if” analysis. Such analysis can 
indicate how close a non-uniform batch (as declared by a goodness-of-fit test) was to passing or how 
close a uniform batch was to failing. This is one function of the meta-analysis discussed in the previous 
section. 
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 Three examples from the cases of section 4.2 were chosen for single-batch analysis. In all three 
batches, the set of cumulative probabilities failed the K-S goodness-of-fit tests. The K-S test lends itself 
to visualization, and the three batches are shown in Figure 9(a), (b), and (c). The gray-shaded regions 
indicate the region of acceptance for the K-S test at α=0.1 and sample size of I=10. Remember that the 
y-axis expected cumulative probabilities are intrinsic to the uniformity assumption and computed for the 
i-th empirical cumulative probability as i/I. The x-axis empirical cumulative probabilities are derived 
from the pairing of simulation and real-world test data. During “what if” analysis, the analyst can 
evaluate the effect of moving the empirical probabilities horizontally, but not vertically. This horizontal 
tweaking mimics the effect of an altered test event result paired with an unaltered simulation 
distribution15. 

 
(a) 

 
(b) 

 
(c) 

Figure 9: Single batches of 10 cumulative probabilities taken from the multiple batches analyzed in section 4.2. The gray-
shaded region is the region of acceptance for the K-S test at α=0.1. If any one of the cumulative probabilities in the batch lie 
outside this region, the K-S test will fail and the batch is declared non-uniform. Note that batches A and B were taken from 
Case 1, the ideal simulation, while batch C was taken from Case 3, the highly skewed simulation. 

 The batches in Figure 9(a) and (b) were both taken from Case 1, the “ideal” simulation. Recall 
that the simulation populations for Case 1 were statistically identical to the corresponding real-world 
populations. Therefore, batches A and B represent an unfortunate situation for the analyst: the pairing of 
the real-world data to a statistically ideal simulation resulted in a failed uniformity test (a type I error). 
The analyst, however, would have no idea that a type I error occurred and might conclude the simulation 
was a poor representation of the real process. Looking at batch A in Figure 9(a), three cumulative 
probabilities fell outside the region of acceptance. All three of these cumulative probabilities would need 
to be inside the shaded region for the batch to be declared uniform. Tweaking three probabilities in the 
same set might be unpalatable for most analysts, so this type I error would prevail and the analyst would 
declare the simulation to be suspect. On the other hand, batch B in Figure 9(b) was very close to passing. 
A slight decrease in the value of the fourth cumulative probability would allow the batch to pass the K-S 
test. In this situation, the analyst might conclude that the batch essentially passed, because a slightly 
different outcome in a single test event sways the results considerably. 

 Figure 9(c) shows a batch from Case 3, the highly skewed simulation. Most of the empirical 
cumulative probabilities are bunched near 0.0 and 1.0, and this implies the test results were very far 
from the simulation mean in every simulation/test pair. This is expected given the simulation of Case 3 
was designed to be a particularly poor representation of the real-world process. At the same time, this 
batch illustrates a shortcoming of the K-S test with regards to statistical power. For the chosen alpha and 
sample size of 10, the K-S region of acceptance is relatively large, making a type II error relatively 

                                                 
15 Or similarly, an altered simulation distribution paired to an unaltered test event result. 
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likely (low statistical power, or high beta). If the analyst concluded that a slight decrease in the sixth 
cumulative probability were warranted, the batch would pass the K-S test. The null hypothesis that the 
simulation and test populations are statistically similar would remain true, according to this “what if” K-
S result. Hopefully, the analyst would notice the bunching of probabilities at the tails and conclude that a 
type II error is very likely. Also note that increasing the alpha value (which increases the likelihood of a 
type I error) would decrease the likelihood of a type II error, and the region of acceptance would become 
narrower. Looking at Figure 9(c), as alpha increases, the shaded region encompasses fewer of the 
bunched probabilities and the K-S test fails. 

4.4. Possible Pitfalls in Single Batch Analysis  

 In the previous section, the “what if” analysis was restricted to shifting empirical probabilities in 
the x-axis or changing the alpha value. It is very tempting to explore more elaborate “what if” 
techniques, and the obvious first step might be altering the number of probabilities in the batch. For 
instance, looking at batch B in Figure 9(b), one might be tempted to remove a probability and pretend a 
particular test event never occurred. One might be tempted to add a probability or two to batch C (Figure 
9(c)) and make the claim that an extra test event or two might vindicate this simulation. Such proposals 
are not altogether different from analyzing the effects of statistical outliers in conventional parametric 
statistics. 

 However with the technique presented here, artificially altering the probabilities is somewhat 
treacherous. Remember that adding or removing probabilities from a batch changes both the K-S test 
region of acceptance as well as the y-axis expected probabilities. This author found that it was very easy 
to “game the system” by carefully choosing probabilities for removal to maximize the chances that the 
reduced set would pass the uniformity test. In fact, removing probabilities that appear to be outliers 
ignores a fundamental trait of this technique: a uniform distribution of probabilities implies that all 
values from 0.0 to 1.0 are equally likely to occur. In other words, so-called outliers do not exist by 
definition16. Removing a probability, akin to turning a blind eye to a test event, only reduces the ability 
to determine uniformity. As the theory in Section 3 shows, there are no “bad” cumulative probabilities, 
just bad sets of probabilities. An isolated cumulative probability is completely neutral – it says nothing 
about the simulation or test event that produced it. Likewise, adding a fictitious probability to a set 
merely obscures the true answer. If one were to add enough probabilities in the correct places, any set 
could be forced to appear uniform. The bottom line is that these “what if” techniques obscure any 
inferences made from the original data in hopes of achieving a desired outcome from the uniformity test. 

 One of the most commonly encountered questions will probably be, “Why wouldn’t my test 
event always fall near the simulation mean and produce cumulative probabilities near 0.5?” Figure 10 
shows a normal cdf with μ = 0, σ = 1. Recall that random samples from a normal distribution should fall 
within one standard deviation of the mean 68% of the time. The shaded box in Figure 10 spans ± 1 
standard deviation in x, and this corresponds to cumulative probabilities between 0.16 and 0.84. 
Therefore, under normal distribution assumptions, a test event/simulation pair should produce a 
cumulative probability in this window 68% of the time and outside this window 32% of the time. Again, 
since cumulative probabilities are hypothesized to be uniform for an ideal simulation, any given 

                                                 
16 For distributions other than uniform, probability of occurrence usually decreases as the value moves farther from the mean. 
An “outlier” is a value considered to have an unusually low probability of occurrence. For uniform distributions, though, 
probability of occurrence is the same over the entire interval. 
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probability is equally likely and any equally sized region of cumulative probabilities is equally likely. 
Also, cumulative probabilities are sensitive to both the mean and standard deviation of the simulation 
distribution. Even when test events fall fairly close to the mean, sensitivity to standard deviation will 
cause the cumulative probability to be vary. Large numbers of cumulative probabilities near 0.5 might 
imply that simulation results have a much higher variance than does the real-world process, leading to a 
nearly flat pdf around the mean. 

 

 

 

Figure 10: Using a normal cdf as an example, the shaded box spans +/- 1 standard deviations from the mean in x and 
cumulative probability 0.16 to 0.84 in y. Assuming normally distributed data, cumulative probabilities derived from a 
test/simulation pair should be inside this box 68% of the time. Cumulative probabilities should be outside the box (<0.16 or 
>0.84) 32% of the time. 

5.0 Conclusions 

 The analysis of Section 4.0 demonstrates the cumulative probabilities approach described in 
Section 2.0 is useful for determining whether simulation outputs are statistically similar to real-world 
test results. The cumulative probability technique aggregates independent experiments to provide an 
overall assessment of simulation output validity. Approximately 95% of the Gaussian and Rayleigh data 
example cases involving “ideal” simulations passed the uniformity test, and this passage rate was 
consistent with the chosen confidence level α=0.1. When the simulation populations were skewed from 
the test event populations (either in mean or variance), the cumulative probabilities appeared 
substantially less uniform. Case 3 three analyzed the effect of a particularly poor simulation, and the 
data yielded very non-uniform cumulative probabilities. Approximately 80% (Gaussian) and 90% 
(Rayleigh) of these batch cases failed the K-S test for uniformity. 

 For the purposes of this paper, the important trend to note is that fewer batches pass the K-S test 
when simulation population parameters are permitted to deviate from the test populations. Cases 1 
through 3 confound two sources of variability (random sampling of probabilities in addition to random 
assignment of population parameters), yet the uniformity tests answer the question, “Were the 
simulation and test populations statistically similar?” Cases 4 through 6 eliminate the random population 
assignment across batches, and the technique remains equally valid. Cases 5 and 6 showed that the 
technique is sufficiently flexible to handle a simulation that performs well in some regimes and not as 
well in others. 

 Although beyond the scope of this paper, the next logical question is, “How much simulation/test 
population variability will this technique tolerate before it indicates a simulation is not a good statistical 
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predictor of the real-world process?” That answer would require a carefully structured sensitivity 
analysis with a number of fixed assumptions regarding simulation and test population characteristics. 

 Finally, the single batch analysis most closely illustrates the problems inherent to an actual 
validation effort. As with any statistical analysis from sampled data, any answer gleamed from only one 
set of probabilities entails a degree of risk (Type I error), and the analyst must assess this risk. 
Fortunately, if real-world experiments are replicated, the certainty of this technique improves, because 
each replication produces another cumulative probability. With a careful regard for Type I error and a 
realistic view of meta-analysis approaches, the cumulative probability technique provides the analyst 
with a quantitative tool to supplement the often subjective techniques used in simulation validation. 
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The Conundrum

A commonly held belief:
“We can reduce the cost of our test through M&S –
fewer events = less money”

Counterpoint:
“But we need test data to demonstrate the simulation gives us 
credible answers.”

The conundrum:
“I want to have my cake (fewer test events)
and eat it too! (credible, validated simulation)”
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The Conundrum

A basic tenet:

Validation attempts to show that a model or 
simulation faithfully reproduces the effects of 
the real-world system or process.

faithful: true to the facts, to a standard, or to an original
- a Webster’s definition
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In practice:
A test budget is highly constrained by externals
Rarely will a simulation validation effort drive:

The number of real-world test events
The complexity of real-world test events

Almost a given:
Simulation validation will involve a regrettably 
small number of data points

The Conundrum
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The Conundrum

What information is commonly available, in 
practice?

One or more response variables of interest from 
real-world test events
A limited set of test events, each conducted:

Under different test conditions
With minimal overlap in the parameter space

The simulation being validated
Is easily configured for multiple trials (repetitions)
Produces a response variable output for each trial
Can be configured to closely match the real-world test 
conditions
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Hypothetical Example

Test and simulate fuel economy for a vehicle

YesColdMixed Trails75
NoHotSand20
NoColdMountain Trails40

YesMildPaved Highway100

Trailer in tow?TemperatureRoadDistance
(miles)

Note: This matrix does not represent an actual vehicle test. It is only a hypothetical example.

Fuel economy:
measured Does simulation 

accurately predict 
fuel economy?Fuel economy:

simulation
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A Non-Parametric Approach

This technique will provide
A non-parametric population comparison 
between a simulation and the real-world

This technique will NOT provide
Comparisons of treatments
Error estimates (bias and error covariance) 
between the simulation and real-world 
(stochastic estimation techniques)
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Theory: the inverse CDF

Consider a random variable, X, with 
cumulative distribution function (cdf)

Consider the inverse cdf, Z, such that

where U is a uniformly distributed random 
variable

∫
∞−

=
x

XX dttfxF )()(
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Theory: the inverse CDF

Through a straightforward derivation, the 
following relationship can be shown 1

Which means:
The probability of Z being less than x is a 
constant, h, the cumulative probability from FX(x)
Samples distributed as X produce uniformly 
distributed cumulative probabilities

It is easier to see this graphically…

[ ] )(xFhxZP X==≤

1. Leon-Garcia, Probability and Random Processes for Electrical Engineering, 2nd ed, 1994
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Theory: the inverse CDF

Cumulative probs are 
uniformly spaced
Cumulative probs are 
mapped through the 
cdf (the inverse 
operation)
The frequency of x is 
according to the 
random variable X
(normal in the 
example)

Normal cdf
μ=0, σ=1
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You’ve seen this before – think “percentiles”



11

Theory: Fisher Combined Test

Fisher Combined Probability Test allows 
aggregation of results from dissimilar test 
events

Aggregates cumulative probabilities

Does NOT aggregate raw data

The overall process works something like this…
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Theory into Practice

Produce “real-world” test 
data population

Xtest

Produce “simulation”
output data population

Xsim

Produce numerical 
approximation to cdf FX(x)

Determine a cumulative 
probability

100 Monte Carlo 
random draws 1 “test event”

random draw

I-th Test Event /
Simulation Scenario Pair

Apply K-S test for uniformity against set 
of I cumulative probabilities

Test Event /
Simulation Scenario

Pairs

Equivalent to I unique “real-world” test events with I
corresponding simulation events

Normal cdf
μ=0, σ=1
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(from simulation)

“Real-world” Result

Resulting
Cumulative Prob
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Theory into Practice

Process will produce uniformly distributed 
cumulative probabilities, if:

The test event populations are statistically 
similar to the simulation populations, and…

The sample size is sufficiently large

If the populations are statistically different:
Cumulative probs will not be uniform (for 
sufficient sample size)
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Theory into Practice

Simulation Data
Histograms

Simulation
Mean

Test Event
Result
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0.1107 < 0.368 (KS Critical Val)
Declare set to be uniform

0.6384

0.1419

0.2786

1.0000

0.2651

0.2893

0.5365

0.5567

0.9060

0.8062

Cumulative
Probabilities

K-S Test

0.1107

Theory into Practice

Convert histograms to 
cumulative distributions
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Previous work

Internal working papers for validation of the 
AIM-9X engagement simulation

Arthur Fries (Institute for Defense Analyses)

“Another ‘New’ Approach for ‘Validating’ Simulation Models”
6th Annual U.S. Army Conference on Applied Statistics, 2000

Presented basic concept for sim validation
Tail probabilities

Fisher transformation and a test for uniformity

Extensive theoretical treatment
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Step beyond previous work

Previous work geared towards spatial data 
(2-D miss distance scatter plots)

Theory works for any data distribution; merits a 
generalized look

Theory deserved a comprehensive 
demonstration through simulation

Will the theory hold up to real data?

Can the theory actually aid a simulation 
validation effort?



18

0.1107 < 0.368 (KS Critical Val)
Declare set to be uniform

0.6384

0.1419

0.2786

1.0000

0.2651

0.2893

0.5365

0.5567

0.9060

0.8062

Cumulative
Probabilities

• Multiple repetitions of this process
will demonstrate its applicability

• 100 Repetitions of 10 sim/test pairs

Testing the Process
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Case 1: Ideal Sim

Simulation and test populations are 
statistically identical

All 10 pairs within a given batch are “ideal”
Simulation is an “ideal” predictor of the real-
world

Each batch includes a unique set of 10 pairs
No repetition of population parameters
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Analysis: The “ideal” simulation
Rayleigh K-S test histogram (left)
Gaussian and Rayleigh K-S cdfs

K-S test critical value (red vertical line) 
maps to about 95-th percentile
95% of batches pass uniformity test
5% fail for two-sided α = 0.10

Type I
error region
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Case 3: Highly Skewed Sim

Simulation and test populations are 
statistically very different

All 10 pairs within a given batch are “non-ideal”
Simulation is an “non-ideal” predictor of the real-
world

Each batch includes a unique set of 10 pairs
No repetition of population parameters

Test population parameters:
(-)100% - (+)300% of simulation mean
(negative implies a reflection about the coordinate axis)

50%-200% of simulation standard deviation
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Analysis: Highly skewed sim
Rayleigh K-S test histogram (left)
Gaussian and Rayleigh K-S cdfs

80% (Gaussian)/90% (Rayleigh) 
batches fail uniformity test
10%/20% fall in a Type II error region

Type II
error region
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Cases 5 and 6: Mixed sim

Looks at a simulation that is
Good in certain regimes
Not as good in other regimes

Case 5
Three pairs, “non-ideal” predictor
Seven pairs, “ideal” predictor

Case 6
Six pairs, “non-ideal” predictor
Four pairs, “ideal” predictor

Populations same for all 100 batches
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Analysis: Mixed case 5

Gaussian data only
About 90% of batches pass 
uniformity test
Cumulative probabilities 
shown below

3 pairs are “non-ideal”
7 pairs are “ideal”
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Analysis: Mixed case 6

Gaussian data only
About 45% of batches pass 
uniformity test
Cumulative probabilities 
shown below

6 pairs are “non-ideal”
4 pairs are “ideal”
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Conclusions from Analysis

When the simulation was ideal…
Uniform cumulative probs are very evident

When the simulation was somewhat skewed 
in means and standard devs…

Cumulative probs are ambiguous at sample size 
of I=10

When the simulation was highly skewed…
Cumulative probs exhibit non-uniformity given 
the power of the chosen K-S test
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Conclusions from Analysis

When the simulation is mixed:
K-S test is flexible: it gives a good overall 
indication of validity

More “non-ideal” pairs reduced the passing rate

Remember this is a statistical test!
Strictly speaking:
Accepts or rejects a null hypothesis

Fundamentally asks:
Is the simulation a good statistical predictor of 
the measure of interest?
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Take Aways

For problems with critical response 
variables of interest:

Examples: a break rate, a lethality estimate, etc.
You may only get one (or a few) “real-world”
data point(s) per test event
Judging simulation fidelity from individual events 
is statistically dubious (very small sample sizes)

Cumulative probability approach aggregates 
results from dissimilar test events
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Take Aways

Consider it one quantitative tool in the 
toolbox – not everything is a nail!

Adds some statistical rigor to the validation

More qualified answers require:
A more robust experiment design
A larger collection of “real-world” test data
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Questions?
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Backups
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Analysis: a “simulated” exercise

Six cases were run
Most cases involved two sets of data

Xtest and Xsim ~ Normal, for all I pairs
Xtest and Xsim ~ Rayleigh, for all I pairs

Each case consists of 100 “batches”
Each batch contained I=10 pairs (or test events)

Batch populations have randomly 
determined means/std devs

Type I and II errors associated with the 
technique will be obvious
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Analysis: K-S goodness-of-fit

Kolmogorov-Smirnov test
Used two-sided test, with α = 0.10
For I=10 sample size, critical value is 0.368

If K-S statistic falls below critical value
Cumulative probs are sufficiently uniform
Simulation and real-world populations are 
statistically similar
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Case 2: Moderately Skewed Sim

Simulation and test populations are 
statistically different

All 10 pairs within a given batch are “non-ideal”
Simulation is an “non-ideal” predictor of the real-
world

Each batch includes a unique set of 10 pairs
No repetition of population parameters

Test population parameters:
50%-150% of simulation mean
100%-110% of simulation standard deviation
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Analysis: Moderately skewed sim
Gaussian K-S test histogram (left)
Gaussian and Rayleigh K-S cdfs

K-S test critical value (red vertical line) 
maps to about 65-th percentile
65% of batches pass uniformity test
35% fail for two-sided α = 0.10
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Case 4: Another “ideal” case

Simulation and test populations are 
statistically identical

All 10 pairs within a given batch are “ideal”
Simulation is an “ideal” predictor of the real-
world

All 100 batches have the same population 
pairs (unlike Case 1)

Removes a source of uncertainty: random 
assignment of population parameters
Random sampling of test event remains
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Analysis: Another “ideal” case

Gaussian and Rayleigh K-S cdfs
K-S test critical value (red 
vertical line) maps to about 95-th 
percentile
95% of batches pass uniformity 
test
5% fail for two-sided α = 0.10

Almost identical results to Case 
1, as expected
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But I have a question!

“Shouldn’t I expect to see all of my test 
events near the simulation mean?”

A cumulative probability of 0.5 should dominate, 
right?
No, that’s no correct.

Consider the following example using a 
normal distribution…

Recall that 68% of normally distributed data is 
within +/- 1.0 standard deviations of the mean
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The single batch problem

For a normal distribution:
68% of the time, cumulative prob is between 0.16 and 0.84
16% of the time, cumulative prob will be smaller than 0.16
16% of the time, cumulative prob will be larger than 0.84

N o r m a l c d f
μ = 0 , σ = 1
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Application to Validation

The preceeding analysis was an exercise to 
demonstrate the theory

All population characteristics were known
Six different cases with 100 random batches 
were considered
Type I and II errors were recognizable

In a real-world validation problem…
Only the simulation populations are known
Only one “batch” of test measurements may be 
available
Type I/II errors go unrecognized
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But I have a question!

“It seems like the technique only provides a 
yes-no answer to uniformity, right?”

Correct, but…
Looking at the probability set allows some “what 
if” analysis
For example…
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The single batch problem

Gaussian batch #34, 
Ideal Sim Case 1
Three probabilities 
were outside the K-S 
region of acceptance
Lots of tweaking 
required to pass this 
batch
Would need to move all 
three probs within 
shaded region

A type I error case if unaltered: but analyst would never know
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The single batch problem

Rayleigh batch #22, 
Ideal Sim Case 1
One probability was 
barely outside the 
region of acceptance
Very minimal tweaking 
required to pass this 
batch
If this “real-world” data 
point had been slightly 
different, sim would 
have passed!

A type I error case if unaltered: but analyst would never know
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The single batch problem

Gaussian batch #1, 
Bad Sim Case 3
Collection of probs at 
the extremes
One probability is 
barely outside region
Increasing α will shrink 
the size of the shaded 
region

The end points 
would progressively 
cause failure of the 
set

A type II error if altered: analyst should see this coming
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More pitfalls

Adding or removing individual probabilities 
for “what if” analysis is a bad idea

Adding probabilities: with enough properly 
placed “new” probabilities, any batch can be 
made to appear uniform
Removing probabilities: simply hinders the ability 
to evaluate uniformity of the true set

Changing the sample size also alters
The K-S test region of acceptance
The values of the y-axis expected probabilities

Very easy to game the system!
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The single batch problem: pitfalls

Do not attach too much importance to 
individual probabilities

Any probability from 0.0 to 1.0 is equally likely 
(under a hypothesized uniform distribution)
No individual probability value should be 
considered “good” or “bad”

Only the set of probabilities can be judged 
uniform or non-uniform
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